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This paper briefly presents the aims, requirements and results of partial least squares regression analysis (PLSR), and its
potential utility in ecological studies. This statistical technique is particularly well suited to analyzing a large array of
related predictor variables (i.e. not truly independent), with a sample size not large enough compared to the number of
independent variables, and in cases in which an attempt is made to approach complex phenomena or syndromes that
must be defined as a combination of several variables obtained independently. A simulation experiment is carried out to
compare this technique with multiple regression (MR) and with a combination of principal component analysis and
multiple regression (PCA+MR), varying the number of predictor variables and sample sizes. PLSR models explained a
similar amount of variance to those results obtained by MR and PCA+MR. However, PLSR was more reliable than
other techniques when identifying relevant variables and their magnitudes of influence, especially in cases of small sample
size and low tolerance. Finally, we present one example of PLSR to illustrate its application and interpretation in ecology.

Although the experimental method in scientific research,
based on manipulative experiments, is the cornerstone of
modern science, it requires solid hypotheses for testing.
These hypotheses are often the consequence of abstract
reasoning or inspired thought, though in some disciplines,
such as ecology, they are mainly derived from patterns
emerging from previous observations. When analyzing
patterns, the variation in the response variables is estab-
lished as a function of several predictors. These patterns of
covariation are usually established by means of regression
techniques. Multiple regression analysis is the most wide-
spread statistical tool for this purpose. The relationships
between the response (i.e. dependent) and the predictor
(i.e. independent or explanatory) variables are measured
with standardized regression coefficients and are interpreted
as partial effects influencing the variability in the response
variable. From these patterns of covariation, probable cause-
effect interactions may be inferred (Quinn and Dunham
1983, James and McCulloch 1985, Hairston 1989).

The classical regression approach poses four main
problems when analyzing ecological data. First, ecological
phenomena, such as geographical variation of species
richness, habitat preferences, ecomorphological relationships
or colour patterns, are usually described by a large array of
variables (e.g. different orographic, climatic and landscape
descriptors, several habitat structure and floristic composi-
tion measurements, morphometric dimensions of bones and
muscles, or reflectance measured at different intervals within
the wavelength spectrum). Second, these multivariate
descriptors are in many instances non-independent, as they

are usually ordered in environmental gradients, habitat
configurations or morphological syndromes (i.e. collineal
patterns). This introduces complex interactions and redun-
dancies. Moreover, the addition of the sum of squares of the
partial effects of the predictors (XSS; of each variable i) does
not add up to the sum of squares of the whole model
(8Smoden)- Third, if sample size (e.g. the number of different
study plots or individuals) is not large enough compared to
the number of predictor variables, the ability of regression
analysis to find a significant effect is reduced. This fact
consequently inflates type II errors (i.e. accepting a false null
hypothesis). This limitation may be paramount in regression
analyses when the magnitude of the effects is low (i.e. small
R?), the redundancy among predictors is high (i.e. low
tolerance) and the degrees of freedom for each regression
term are small (note that DF =sample size — number of
response and predictor variables). On the other hand, a
multiple regression analysis can not be carried out when the
number of predictor variables equals the number of sample
units, because the degrees of freedom equal zero. Finally, the
classical regression approach does not address the analytical
situation in which more than one response variable is
considered together. This is the case when an attempt is
made to approach complex phenomena such as body
condition or health, which can be measured in several
ways and must be defined as a combination of the several
variables obtained independently (e.g. immune response, fat
reserves, parasite infestation, etc.).

In spite of these difficulties, researchers often take
shortcuts to overcome these problems. One shortcut is to
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remove some variables, selecting redundant variables or
those having non-significant effects on the response vari-
able. In this way, the balance between the number of sample
units and the number of explanatory variables is improved
and type II errors decrease due to the avoidance of low
degrees of freedom. Unfortunately, the process of selecting
variables is generally not shown in published articles, and
consequently this procedure becomes an unknown practice
in scientific research. Another shortcut is to reduce the
multidimensionality in the predictor or response variables
by multivariate reduction methods, such as principal
component analysis (PCA) or multidimensional scaling.
In this accepted practice, the researcher carries out one or
several PCAs, and the factor scores of components
considered relevant or ‘significant’ are retained and included
in subsequent multiple regression analyses. With this
approach, the balance between the number of samples
and the number of variables (now multivariate components)
is improved, the redundancy among predictors does not
exist and problems inherent to the variance partitioning are
solved (i.e. SS,odel =2SS;). Nevertheless, the obtained
components maximize the covariation among the predictor
variables independently of the among-sample variation in
the response variable. Therefore, components derived from
any multivariate reduction technique do not pursue the
maximization of the variance explained in the response
variable subjected to study. This fact can yield patterns or
syndromes within the explanatory variables making little or
no biological sense and consequently hinders the inter-
pretation of results. Furthermore, the application of any
multivariate technique to the regression approach lengthens
analytical time.

Apart from these caveats, one question emerges when
facing the previously mentioned regression problems
specific to many ecological studies dealing with patterns:
is there any statistical tool directly oriented to treat, as a
whole, multiple predictor variables often themselves related,
which maximizes the explained variability in one or more
response variables, when working with modest sample sizes?
The answer is partial least squares regression analysis (PLSR
hereafter), a little known statistical tool in ecological
research but widely used in other scientific disciplines.

The use of PLSR in analytical chemistry began in the
early 1980s and has increased steadily since then. In
contrast, the use of PLSR in ecological studies began
recently, in the late 1990s, though there has not been any
increase in its use in recent years compared to other fields
(Escabias et al. 2007). The intensive use of this statistical
technique in other scientific fields, such as chemistry, is
undoubtedly related to the mathematical properties and
benefits associated with PLSR, which is especially appro-
priate in dealing with a large number of explanatory
variables in comparison with the number of observations,
and in cases of severe multicolinearity (Mevik and Wehrens
2007). While these types of data are quite common in
ecological work, the use of PLSR remains surprisingly
infrequent.

The lack of knowledge about PLSR may be a constraint
in ecologists’ ability to analyze data and to elucidate
underlying patterns. In this paper, we highlight the utility
of PLSR and propose this method as an alternative to the
majority of multivariate techniques that are currently used
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in all fields of ecology. We believe that there is a great
potential for the use of PLSR in ecological studies that has
been overlooked until now. The applicability of this
method will likely be higher for inductive approaches in
which the aim is the definition of patterns of variation
among large sets of usually related variables.

This paper has three goals related to the lack of
information and scholarly practice of PLSR. The first is
to briefly present the aims, requirements and types of results
obtained from PLSR. The second goal is to carry out a
simulation experiment varying the number of predictors
and sample sizes in order to compare this technique with
multiple regression and a combination of regression and
multivariate methods, which are more commonly used in
ecology. Finally, we present an example of PLSR to
illustrate its application and interpretation in ecological
studies.

The partial least squares regression

The partial least squares regression (PLSR) was developed
by Wold in the late 1960s for econometrics (Wold 1975)
and then introduced as a tool to analyze data from chemical
applications in the late 1970s (Geladi and Kowalski 1986,
Martens et al. 1986, Mevik and Wehrens 2007). An
introduction and a statistical overview of PLSR can be
found in Geladi and Kowalski (1986), Frank and Friedman
(1993), Wold et al. (2001), Tobias (2003) and Abdi
(2007). This technique is an extension of multiple regres-
sion analysis in which the effects of linear combinations of
several predictors on a response variable (or muldple
response variables) are analyzed. Associations are established
with latent factors extracted from predictor variables that
maximize the explained variance in the dependent variables.
These latent factors are defined as linear combinations
constructed between predictor and response variables, such
that the original multidimensionality is reduced to a lower
number of orthogonal factors to detect the structure in the
relationships between predictor variables and between these
latent factors and the response variables. The extracted
factors account for successively lower proportions of
original variance (Hubert and Branden 2003, Tobias
2003, Maestre 2004).

PLSR is especially useful when (1) the number of
predictor variables is similar to or higher than the number
of observations (i.e. overfitting) and/or (2) predictors are
highly correlated (i.e. there is strong collinearity). The first
situation constitutes a limitation because regression coeffi-
cients cannot be calculated. The second situation produces
erratic signs in regression coefficients, thus increasing the
difficulty of interpreting the linear regression equation.
These properties should render this technique an essential
analytical tool for consideration in the design of any
scientific study in which the number of sample units
collected is low with respect to the number of measured
explanatory variables. The application fields of PLSR also
cover situations in which there are more than one response
variable, thus serving as an alternative to MANOVA
designs. In these cases where multiple response variables
are used, PLSR creates other latent factors from the linear



combination of the original response variables that act as
synthetic response variables.

PLSR is implemented in the statistical packages most
widely used by ecologists, such as Statistica (StatSoft 2001),
SAS/STAT (SAS 2001), SPSS (<www.spss.com>); Stat-
graphics (<http://www.statgraphics.com/>), MatLab (An-
dersson and Bro 2000), or as an add-in for Microsoft Excel
spreadsheets (XL-Stat, <www.xlstat.com>). Hence, it is a
readily available statistical tool.

A comparative analysis of PLSR with other
statistical approaches

By comparison of the explanatory capacity of the models
(i.e. R?) and the consistency of the results according to
parameter estimates and their significance (i.e. coefficients
and p-values) given different scenarios of sample sizes and
numbers of predictor variables, we attempt to illustrate the
pros and cons of PLSR against two usual alternative
approaches: multiple regression (MR) and principal com-
ponent analysis followed by a multiple regression with the
obtained components (PCA+MR). Explanatory capacity is
usually the most important goal of ecological modelling,
however the type, sign and consistency of relationships
between the response and explanatory variables are equally
important, because they are the basis for our interpretations
of numerical outputs of statistical software packages and
consequently of the establishment of functional links with a
biological meaning among variables.

Results obtained by each statistical method were checked
against a ‘true model’ (hereafter TM). The TM has known
statistical properties generated ad hoc by simulation
processes, and thus it is the ‘omniscient truth’ of relation-
ships and effects structuring the data. The TM was a data
matrix of 5000 sample units and 21 variables with different
levels of association among them (one variable served as a
response variable, while the remaining 20 were used as
continuous predictors). By a randomization process, several
data subsets of different sample sizes were chosen to
measure the consistency of the results obtained in different
sampling trials, and thus to test the robustness of the three
compared statistical methods.

The data matrix

Data were generated using the randomization routines of
Pop Tools 2.7 (<http://www.cse.csiro.au/poptools/>).
Twenty predictor variables of different means and standard
deviations were built showing diverse levels of relationships
among them. All predictor variables had a normal distribu-
tion. Absolute values of correlations between pairs of
predictor variables ranged between —0.987 and 0.987.
The tolerance for each variable ranged between 0.788
(i.e. highly independent of the remaining 19 predictor
variables) and 0.024 (i.e. highly redundant with the
informative content of the other variables). The total
sample size randomized was 5000 sample units.

After this first randomization process, a multiple regres-
sion equation of known parameters was built to predict the
response variable. The equation included both positive and

negative regression coefficients showing a varying degree of
association with the predicted response variable, from very
intense to nearly null influence. After this first step, a
random variable following a normal distribution was added
to the predictions of the previous multiple regression
model, thus establishing the final response variable.

Three different groups of predictor variables were
selected from this matrix of 20 predictors: (1) all variables,
(2) eight highly related (i.e. redundant) predictor variables,
and (3) eight variables with a low level of relationship
among them (i.e. relatively independent with small pairwise
correlations and high tolerances). These three sets of
predictor variables configure two different scenarios of
many vs few variables, and highly vs scarcely related.

Random selection of samples

Four different scenarios were defined according to sample
size: 15, 30, 60 and 120 sample units. These are typical
ranges of sample size managed by ecologists. Therefore,
12 experimental situations were simulated (three variable
sets X four sample sizes). For each of these experimental
situations, 20 random extractions without replacement of
15, 30, 60 or 120 samples were made within the all 5000
sample units (shuffle design — all sampling trials obtained
different sample units). This design mimics the reality of
ecological sampling in which a researcher would have
sampled the same phenomenon on 20 different occasions,
obtaining at every occasion different records from the same
population or within the same environmental gradients.

Generation and evaluation of statistical models

Partial least square regressions (PLSR)

We retained only ‘significant’ components, which we
defined as those explaining more than 5% of original
variance in the response variable. Two components were
always retained in all simulations. We gathered from each
simulation the explanatory capacity (R) of each component
as well as the weight of each predictor within each
component, which helped us to understand the latent
factors defined by each component. The sum of the R* of
the two significant components gave us the total explana-
tory capacity of the PLSR models. The correlations between
the weights for each simulation and those of the TM model
using the 5000 sample units were obtained as an estimate of
the consistency of patterns obtained in each sample.

We also evaluated the consistency between the results in
each simulation by counting the coincidences of ‘signifi-
cant’ (i.e. with square weights >0.05) and ‘non-significant’
(square weights <0.05) variables in each component of
each trial in comparison with the TM obtained for the
whole sample of 5000 sample units. This fact allowed us to
calculate a percentage of correctly assigned ‘significant’ and
‘non-significant’ weights for each set of explanatory vari-
ables and sample sizes. These coincidences are hereafter
referred to as ‘hits’ for the sake of brevity. The percentage of
hits among ‘significant’ variables in our results that should
be ‘significant’ according to the TM (called ‘positive hits’)
is inversely related to the type I error (to reject the null
hypothesis when in fact it is true), whereas the percentage of
hits among non-significant variables in our results that

683


www.spss.com
http://www.statgraphics.com/
www.xlstat.com
http://www.cse.csiro.au/poptools/

should be non-significant according to the TM (called
negative hits) is inversely related to the type II error (to
accept the null hypothesis when in fact it is false).

Multiple regression (MR)

We performed saturated models and gathered for each
simulation the standardized estimates of the coefficients for
each predictor (B) and its significance (p-value), along with
the explanatory capacity of the model (adjusted R?). We
then calculated the correlation between the B’s from each
simulation with B’s from the whole sample of 5000 sample
units (TM) to obtain a measure of the degree of consistency
in the effects (magnitude and sign) of each explanatory
variable on the response variable. Correlations were
averaged for each sample size in each set of variables.

Consistency of the effects of the explanatory variables
was also evaluated by means of the ‘hits’ procedure
(coincidence among significant and non-significant predic-
tor variables in each trial compared to the ‘true model’,
TM). The percentage of correctly assigned significant and
non-significant predictor variables was calculated for each
sample size and set of variables.

‘Best subsets’ is another way to select the most relevant
variables in our set of predictors (Johnson and Omland
2004, Whittingham et al. 2006). Ecologists are usually
faced with the existence of several highly probable models.
This fact makes conclusions difficult as each model may
represent a compelling hypothesis. However, there is only
one true relationship between explanatory and response
variables (in our case the TM). In our case, we calculated
corrected Akaike information criterion (AICc; Burnham
and Anderson 2002) values for models with eight explana-
tory variables. We could not perform this with the set of
20 variables because the number of possible models
(2°° —1 =1048575) exceeds computing capacity of our
statistical software. Models were ordered according the
AlICc value (corrected for small sample sizes) and we
counted the total number of models with an increase in
the AICc (AAICc) value lower than 2 with respect to the
best ranked model. Only those models with AAICc <2
have a substantial level of empirical support (i.e. those
models must be considered because all of them are highly
probable; Burnham and Anderson 2002). The higher the
number of highly probable models, the higher the number
of compelling hypotheses and thus greater difficulty in

ascertaining reality. Hence, the amount of highly probable
models can also be considered an approximation of the
consistency of results.

Principal components analyses+ mMultiple regressions
(PCA+ RM)

The application of a PCA prior to MR requires greater time
and effort as more statistical analyses must be preformed
and the identity of new variables (i.e. factors) obtained from
the original set of explanatory variables must be interpreted.
We retained only those factors with an eigenvalue equal to
or higher than one. Factor loadings of explanatory variables
within each component are used to ascertain the meaning of
each factor. The meaning of components is usually defined
only by those variables with loadings higher than a certain
threshold (0.7 chosen arbitrarily in this paper). We
correlated factor loadings of components obtained for the
whole 5000 sample units (TM) with those obtained for
each trial PCA model to test the consistency of the
components’ meaning. In a second step, we carried out a
MR with the components obtained in the PCA as predictor
variables and we noted the adjusted R* of the saturated
model.

Consistency of results among the different
statistical approaches

Explanatory capacity (R?) of the statistical
approaches

The first component of PLSR simulated models explained
about 85% of variability in those trials with 20 and
8 poorly-related variables. However, in the case of eight
highly-related variables, this proportion diminished to
63%. The final explanatory ability of the PLSR models
considering the first two components was very similar
among the three sets of variables, explaining more than
83% of the original variance in the response variable
(Fig. 1). These patterns illustrate a typical situation in
ecologcial research, in which the addition of new explana-
tory variables to models is often at the expense of higher
levels of collinearity among them, but with a modest gain of
explained variance. In this way, PLSR is unaffected by this
phenomenon because it detects the main multivariate
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Figure 1. Variation of the explanatory capacity (R?) of the PLSR (dots), MR (triangles) and PCA+MR (squares) under different
scenarios of sample size and sets of explanatory variables. True values of R* for the whole dataset are shown as TM (‘true model’ or true
pattern with the whole sample of 5000 sample units; see text). Vertical bars are SD.
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syndromes or latent factors that maximize the variance
explained in the response variable.

The effect of sample size was weak in the three different
scenarios of explanatory variables. Results were quite similar
to those obtained for the ‘true model’ (TM), even with just
15 cases. Furthermore, R* values of the different PLSR
models were slightly affected by the stochasticity involved
in the random selection of sample units (see SD bars in
Fig. 1). Therefore, PLSR gave reliable results even in the
least desirable situations of low sample sizes and large
numbers of variables.

MR and PCA+RM are also able to explain a large
amount of variability in the response variable (i.e. R* is
always very high; Fig. 1), however they cannot be applied in
analytical scenarios of more predictor variables (20) than
sample units (15). The variability of PCA+ MR results was
much higher than in the other approaches (see SD bars in
Fig. 1). High collinearity among predictors (i.e. models
with eight highly-related variables) also reduced the
explanatory capacity achieved by the models, with PCA +
MR again being the most negatively affected method.
Changes in sample size did not severely affect the
explanatory ability, although MR was the approach that
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tended to more frequently overestimate the true effect of the
explanatory variables with low sample sizes. Therefore,
PCA+MR was the worst method, while MR was the best.
To summarise, based on the models’ explanatory
capacity (i.e. R?), the PLS regression and multiple regres-
sion accounts for an amount of variance very similar to the
expected one (‘true model’). The combination of principal
component analysis and multiple regression produced less
confident results (lower explained variance and results more
variable among different trials) and was the least repeatable
and least robust against reductions in the number of
explanatory variables or increases in their collinearity.

Meaning of PLSR components and MR and PCA
patterns

The identity of the first component of PLSR models was
extremely robust to variations in sample size. Correlations
among weights obtained in each PLSR trial and those of the
TM were always higher than 0.9 and reached values close to
1 with sample sizes of 60 or 120 sample units (Fig. 2).
Therefore, the pattern found in the predictor variables that
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Figure 2. Consistency of results between simulations and the ‘true model’ (i.e. true pattern with the whole sample of 5000 sample units).
Similarity is measured by means of the Pearson correlation (r) coefficients (20 trials per point) between weights of the two first
components of PLSR models or B’s of all variables in MR and those values corresponding to the TM for different sample sizes and sets of
variables. Right graphs represent standard deviation values for these average correlation coefficients. Dots are values for the weights of the
first component of the PLSR, triangles for the second component of the PLSR and squares for the Bs of the MR.
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Figure 3. Consistency in the meaning of components of PCAs. Left graphs represent average Pearson correlation coefficients between
factor loadings of simulations and those factor loadings corresponding to the ‘true model’ (TM; i.e. true pattern with the whole sample of
5000 sample units). Right graphs represent standard deviation values for these average correlation coefficients. There are 20 trials per
point. Dots are values for the set of 20 variables, triangles for eight non-related variables and squares for eight related variables.

maximizes the variability explained in the response variable
has ever the same meaning.

The second component of the PLSR model was less
similar to that expected in the TM, although similarity
figures are very high in working with 30 or more sample
units and 20 predictor variables or a subset of eight
highly-related variables (Fig. 2). Only in the case of eight
non-related predictor variables was the similarity low,
especially with a sample size lower than 30. It should be
noted that the second component in the sets of 20
variables and eight less-related variables had very low
relevance, since it accounted for a minimal proportion of
the total explained variance (R?) of the response variable
(about 5-10%).

Correlation values between the standardized regression
coefficients (B) from MR trials and those obtained in the
whole sample of 5000 sample units (TM) are low and very
dependent on working sample sizes (Fig. 2). Estimates of
B’s reach reliability only with large samples (n=120).
Although MR shows slightly higher R? than PLSR (Fig. 1),
the influence of the predictor variables is less repeatable.
This fact is a concern because it implies that conclusions
from statistical analyses will depend strongly on the
inherent stochastiticy involved in the sampling process,
especially when working with small sample sizes.

Principal components analysis carried out with the
whole 5000 sample units provided only two components
with an eigenvalue higher than 1 in the sets of eight
predictors, while the full set of 20 predictors provided four.
For this reason we limited our consistency analyses to the
first two components of the PCA. The average correlation
between factor loadings of PCA models in trials with those
of the TM were high in general, which stresses that the
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meaning of components was consistent even with low
sample sizes (Fig. 3). Consistencies were especially high
when variables were strongly collinear. The first component
was more consistent than the second, similar to that found
in PLSR.

The probability of correctly rejecting the false null
hypothesis and thus accepting the alternative true hypothesis,
(i.e. power of the test) can be assessed considering the results
shown in Fig. 2 and 3. The similarity between the true
patterns of relationship of the predictor and response
variables was always higher, and the variability in this
similarity was always lower, in the PLSR compared to MR
for any sample size, number of variables involved or degree of
relationship among predictor variables. This is especially
evident with the first component of the PLSR which accounts
for a large proportion of the explained variance in the
response variable. Similarly, higher ‘power’ is obtained in the
PLSR when compared to PCA+MR, except when working
with eight related variables, where both methods provided
patterns very similar to the ‘true model’. Nevertheless, the
explained variance in the response variable was always higher

in the PLSR than in the PCA+MR method (Fig. 1).

‘Hits’ in PLSR and MR

Inconsistencies found previously by standardized regression
coefficients (B) in MR are even more evident by assessing
the number of ‘hits’ in the correct assignment of significant
and non-significant effects of predictors. Furthermore, the
effect of sample size is stronger in MR than in PLSR. In
most cases with small sample sizes, MR is unable to
identify significant relationships between predictors and
the response variable when there are, in fact, significant
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true pattern with the whole sample of 5000 sample units; see text). Positive ‘hits’ refer to significant variables in the TM that were
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standard deviations.

relationships present (Fig. 4). Even with a large sample
size, such as 120, percentages of correct positive significant
effects in MR are lower than those observed in the PLSR.
Nevertheless, MR showed a high level of agreement with
truly non-significant effects under a large variety of
analytical scenarios.

Those variables with a ‘significant’ weight within the first
PLSR component of the TM are correctly assigned as
significant in PLSR simulations in more than 85% of cases
(Fig. 4). This percentage reaches values around 93-96%
with a sample size of 120 data points. In the case of negative
‘hits” (truly ‘non-significant’ effects identified as ‘non-
significant’), percentages are only slightly lower for the first
component of PLSR models (Fig. 4), especially with high
collinearity of predictors.

In the case of the second component of PLSR models,
correct assignments are fewer than in the first component,
but remain high in most cases, especially identifying true
‘significant’ effects working with eight highly related
variables.

Hence, MR models are unable to detect significant
effects of explanatory variables more often than PLSR,
especially in cases with small sample sizes and high levels of
collinearicy. PLSR arises again as strongly robust to
variations in sample size and strongly shielded against

both type I and type II errors.

Best MR models according to AICc

Ideally, there exists a single best model according to AICc as
there is only one true relationship between the response and
explanatory variables. However, MR yields up to 13 highly
probable models when analysing datasets with eight
predictor variables (mean =4.11, and SD =2.59 for all
the array of possible analytical scenarios). The number of
highly probable models increased with sample size and was
not affected by the degree of collinearity of predictors.

In summary, partial least squares regression analysis
provides similar results to those obtained with multiple
regression, or a combination of principal components
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Figure 5. Scatterplots of the PLSR analyzing the species richness
of terrestrial bird species in the Canary and Selvagem Islands.
Sample size is all 12 islands larger than 1 km? in the archipelago.
(a) relationship between the species richness and the position of
each island in component 1 of the PLSR. (b) residual variation in
species richness, after removing the effect of component 1 in (a),
with the second component. For the meaning of each component

see Table 1.

analysis plus multiple regression, according to the amount
of explained variance. However, PLSR produces more stable
results with regard to the identification of the relevant
variables and their magnitudes of influence independent of
the sample size in the analyses, a situation in which other
regression approaches fail. In addition, the probability of
correctly rejecting the false null hypothesis, and thus
accepting the alternative true hypothesis (i.e. power of the
test), was higher in the PLSR analysis. PLSR may simplify
some statistical analyses in working with ecological data,
with the additional advantage that it can be applied to cases
in which sample sizes are equal to or lower than the number
of predictor variables. The latter makes PLSR an excellent
alternative in studies in ecology, where the relationships
between response and predictor variables are often complex
due to the high redundancy and interactions among groups
of predictor variables. This is especially the case in
ecological designs in which the aim is to test hypotheses
when predictor variables, though not high in number,
interact and/or cancel each other.
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An example of application of PLSR

Recent examples of the use of PLSR can be found in some
areas of ecology, such as microbial ecology (Stepanauskas
et al. 2003, Allen et al. 2005), paleolimnology (Zhang et al.
2007), limnology (Larocque et al. 2006, Karle et al. 2007,
Sobek et al. 2007), soil ecology (Ekblad et al. 2005),
ecotoxicology (Sonesten 2003, Spanos et al. 2008), envir-
onmental effects on biodiversity (Maestre 2004, Davis et al.
2007, Palomino and Carrascal 2007), palacoclimatological
reconstructions and biogeography (Seppa et al. 2004), large
scale influence of climate (Bergant et al. 2006, Finsinger
et al. 2007), biodiversity mapping (Schmidtlein 2005),
definition of ecological indicators (Amand et al. 2004,
Potapova et al. 2004), community ecology (ter Braak and
Schaffers 2004, Carrascal and Alonso 2006), modelling of
phenology (Gordo et al. 2008) and ecomorphology
(Hoffsten 2004). Results of Zhang-yu et al. (2007) also
demonstrate that PLSR is more effective than stepwise MR
or regression analyses with PCA in relating hyperspectral
leaf reflectance in rice Oryza sativa crops to the disease
severity of the fungus Bipolaris oryzae.

As an illustrative example of PLSR application, we
analyzed differences in the number of breeding landbird
species among the Canary and Selvagem Islands using data
on area, distance to mainland, maximum altitude and age of
each island, average structural complexity of habitats on
each island, and within-island habitat diversity (Carrascal
and Palomino 2002). In this example, the number of
independent or predictor variables is six, while the sample
size (number of islands) is twelve. Table 1 shows the results
of MR and PLSR.

The multiple regression model (MR) provides a very
significant result (Fg5 =41.96, p =0.0004) accounting for
98.1% of among-island variability in species richness.
Paradoxically, none of the predictor variables reached
significance at o0 =0.05 in the multiple regression. There-
fore, an extremely explanatory and significant model is
obtained but which effects are significant remains unknown.
This bizarre result is due to a doubly undesirable phenom-
enon in ecological research: sample size cannot be enlarged by
increasing sampling effort (all the islands in the archipelago
were studied), and all the relevant predictor variables are
highly correlated. This last concern is well illustrated by the
very low tolerance reached by predictor variables (Table 1).

Results of the PLSR analysis provide two significant
components explaining 97.8% of the original variance in the
response variable (Table 1). The amount of variance
explained is very similar to that obtained by MR. The first
component accounts for a major proportion of the explained
variance, while the second component accounts for a
marginal, but significant, 9.1%. The meaning of the
components can be interpreted considering the weights
attained by the variables. The addition of the squares of the
weights within each component sums to one, so the
contribution of each predictor variable to the meaning of
each component can be easily estimated. Component
1 mainly associates island area to the maximum altitude
and the landscape diversity of each island. This means that
these predictor variables cannot be seen as independent
variables, but they comprise an ‘island syndrome’ affecting
bird species richness. These three variables alone retain



Table 1. Results of the multiple regression analysis (MR) and the
partial least squares regression analysis (PLSR) carried out with the
number of terrestrial bird species breeding in the Canary and
Selvagem Islands (response variable) and six predictor variables
describing the large scale characteristics of 12 islands. For original
data, see Carrascal and Palomino (2002). Tolerance: 1 minus the
squared multiple correlation of that variable with all other inde-
pendent variables in the regression equation (higher values denote
more independent variables). Beta: standardized multiple regression
coefficient. w COMP 1 and 2: weights of each variable in the first
and second PLSR components. R?: proportion of the variance in the
response variable accounted for by the multiple regression analysis
or each component of the PLSR. All predictor variables were
included log-transformed in the models. PLSR weights whose
squares are larger than 0.2 are shown in bold type.

Tolerance MR PLSR
Beta p w w
COMP1 COMP2
Island area 0.042 0.379 0.270 0.553 0.429
Maximum 0.042 0.379 0.268 0.530 0.173
altitude
Distance from 0.310 —0.180 0.169 0.079 -0.751
mainland
Island age 0.268 0.149 0.270 0.334 0.074
Average habitat 0.235 0.013 0922  0.253 -0.465
complexity
Landscape 0.137 0.223 0.244 0.481 0.025
diversity
R? 0.981 0.888 0.091
p <0.0001 <0.0001 <0.0001

81.8% of the information content of the first component
(0.553%>4+0.5302+0.481> =0.818). The correlation be-
tween species richness and the position of the 12 islands in
the first component of the PLSR is shown in Fig. 5a
(r=0.942, p <0.001). The second PLSR component works
on the residual variation not explained by the first compo-
nent (i.e. 1-0.888 =0.112). Figure 5b depicts the relation-
ship between the residual variation in species richness and the
second component of the PLSR (r=0.899, p <0.001).
Therefore, the original variance explained by the second
PLSR component can be estimated as the proportion of the
residual variance (after subtracting the first component)
accounted for by the second component: 0.112 x 0.899% =
0.091. The information content of the second component is
negatively associated with distance of the islands to mainland
and the average habitat complexity of the landscape
(-0.751>+-0.465% = 0.780), identifying islands more dis-
tant from the dry African mainland as wetter and with more
developed vegetation, defining another ‘island syndrome’.
Therefore, the among-islands variation in species richness in
this archipelago can be disclosed as different environmental
syndromes resulting from combinations of non-independent
predictors in several components. The meaning and the true
explanatory magnitude of each of these PLSR components
can be then easily estimated thanks to the weights of the
original predictor variables.
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